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Texas: The Lone Star State
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Texas State Capitol

-

Is the Texas Capitol really taller
than the U.S. Capitol?
512-590-8362, 21#

-
Text TEXCAP Austin

56512 for @ li

nk to an image

of Austin from the top of the
Capitol .Dome.
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Colorado River
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Reception at U, Austin




Big Picture of AAAI

®* [nformation about main technical track
® 1991 submissions (1406 submission in AAAI-14)
® 539 accepted papers (=27% acceptance rate)
e AAAI-15is 5.5 days (one day longer than AAAI-14)
® First winter Al conference

® Tracks
e Al and the Web (/7 sessions)
® Natural Language Processing (4 sessions)
® Machine Learning (9 sessions)
® \ision (3 sessions)
aditional Al: Cognitive Systems, Comp
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Tight Schedule: 8:30am — 8:30pm




Talks Given by Senior Members

Deep Learning

Geoffrey Hinton

University of Toronto
&
Google Inc

Senior Member Blue Sky Talks
What’s Hot Talks
Classic Paper Talk

Panel Discussions
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Best Papers

® Qutstanding Paper
® “From Non-Negative to General Operator Cost Partitioning”

® Qutstanding Paper Honorable Mention

® “Predicting the Demographics of Twitter Users from Website
Traffic Data”. Aron Culotta, Nirmal Kumar Ravi and
Jennifer Cutler, lllinois Institute of Technology

® Qutstanding Student Paper

® “Surpassing Human-Level Face Verification Performance on
LFW with GaussianFace”




Predicting the Demographics of Twitter Users
from Website Traffic Data. [Aron Culotta et al.]

® Create a distantly labeled dataset, instead of using
manually labeled dataset

quontcast  Track the demographics of visitors of websites
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Predicting the Demographics of Twitter Users
from Website Traffic Data. [Aron Culotta et al.]

® Create a distantly labeled dataset, instead of using
manually labeled dataset
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Predicting the Demographics of Twitter Users
from Website Traffic Data. [Aron Culotta et al.]

® Create a distantly labeled dataset, instead of using
manually labeled dataset

quontcast  Track the demographics of visitors of websites

E.g., eater.com
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Predicting the Demographics of Twitter Users
from Website Traffic Data. [Aron Culotta et al.]

® Create a distantly labeled dataset, instead of using
manually labeled dataset

quontcast  Track the demographics of visitors of websites

E.g., eater.com

Search Similar if have
many co-followers
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Follow




Predicting the Demographics of Twitter Users
from Website Traffic Data. [Aron Culotta et al.]

® Create a distantly labeled dataset, instead of using
manually labeled dataset

quontcast  Track the demographics of visitors of websites

E.g., eater.com

Feature: neighbor vector

E.e.,Ais {(D, 1), (E, .5), (F .5
Search Similar if have & { ) ( ) )}

many co-followers

SEers

Follow
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Predicting the Demographics of Twitter Users
from Website Traffic Data. [Aron Culotta et al.]

© variables: gender, age, income, education,
children, ethnicity

® Regression usmg both L1 and L2 regularizer
g <—argmm,gz Z(y(” BOTX)? 4

A Z 118kl + A2l18]13
k=1

® Evaluation 1: correlation coefficient between the
predicted and true demographic variables

e F g, predict 309% is female, and quantcase says 409%
Is female

® Qverall correlation is very strong: 0.77 on average




Predicting the Demographics of Twitter Users
from Website Traffic Data. [Aron Culotta et al.]

® Evaluation 2: Macro-F1 for ethnicity and gender

® Manually labeled 615 users and trained a logistic
regression classifier
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Predicting the Demographics of Twitter Users
from Website Traffic Data. [Aron Culotta et al.]

® Evaluation 2: Macro-F1 for ethnicity and gender

® Manually labeled 615 users and trained a logistic
regression classifier
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